1000 resultados para Xylanolytic complex


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An Aspergillus giganteus strain was isolated as an excellent producer of xylanase associated with low levels of cellulase. Optimal xylanase production was obtained in liquid VOGEL medium containing xylan as carbon source, pH 6.5 to 7.0, at 25degreesC and. under shaking at 120 rpm during 84h. Among the several carbon sources tested, higher xylanase production was verified in xylan, xylose, sugar-cane bagasse, wheat bran and corn cob cultures, respectively. Optimal conditions for activity determination were 50degreesC and pH 6.0. The xylanolytic complex of A. giganteus showed low thermal stability with T-50 of 2 h, 13 min and I min when it was incubated at 40, 50 and 60degreesC, respectively, and high stability from pH 4.5 to 10.5, with the best interval between 7.0 to 7.5. This broad range of stability in alkali pH indicates a potential applicability in some industrial processes, which require such condition. Xylanolytic activity of A. giganteus was totally inhibited by Hg+2, Cu+2 and SDS at 10 mm. The analysis of the products from the oat spelts xylan hydrolysis through thin-layer chromatography indicated endoxylanase activity, lack of debranching enzymes and P-xylosidase activity in assay conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A strain of Aspergillus versicolor produces a xylanolytic complex containing two components, the minor component being designated xylanase II. The highest production of xylanase II was observed in cultures grown for 5 days in 1% wheat bran as carbon source, at pH 6.5. Xylanase II was purified 28-fold by DEAE-Sephadex and HPLC GF-5 10 gel filtration. Xylanase II was a monomeric glycoprotein, exhibiting a molecular mass of 32 kDa with 14.1% of carbohydrate content. Optimal pH and temperature values for the enzyme activity were about 6.0-7.0 and 55 degreesC, respectively. Xylanase II thermoinactivation at 50degreesC showed a biphasic curve. The ions Hg2+, Cu2+ and the detergent SDS were strong inhibitors, while Mn2+ ions and dithiothreitol were stimulators of the enzyme activity. The enzyme was specific for xylans, showing higher specific activity on birchwood xylan. The Michaelis-Menten constant (K-m) for birchwood xylan was estimated to be 2.3 mg ml(-1) while maximal velocity (V-max) was 233.1 mumol mg(-1) min(-1) of protein. The hydrolysis of oat spell xylan released only xylooligosaccharides. Published by Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of extracellular cellulase-free xylanase from Trichoderma inhamatum was evaluated in liquid Vogel medium with different carbon sources as natural substrates and agricultural or agro-industrial wastes. Optimal production of 244.02 U/mL was obtained with xylan as carbon source, pH 6.0 at 25 degrees C, 120 rpm, and 60-h time culture. Optimal conditions for enzyme activity were 50 degrees C and pH 5.5. Thermal stability of T. inhamatum xylanolytic complex expressed as T(1/2) was 2.2 h at 40 degrees C and 2 min at 50 degrees C. The pH stability was high from 4.0 to 11.0.These results indicate possible employment of such enzymatic complex in some industrial processes which require activity in acid pH, wide-ranging pH stability, and cellulase activity absence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Currently, there is worldwide interest in the technological use of agro-industrial residues as a renewable source of food and biofuels. Lignocellulosic materials (LCMs) are a rich source of cellulose and hemicellulose. Hemicellulose is rich in xylan, a polysaccharide used to develop technology for producing alcohol, xylose, xylitol and xylo-oligosaccharides (XOSs). The XOSs are unusual oligosaccharides whose main constituent is xylose linked by β 1-4 bonds. The XOS applications described in this paper highlight that they are considered soluble dietary fibers that have prebiotic activity, favoring the improvement of bowel functions and immune function and having antimicrobial and other health benefits. These effects open a new perspective on potential applications for animal production and human consumption. The raw materials that are rich in hemicellulose include sugar cane bagasse, corncobs, rice husks, olive pits, barley straw, tobacco stalk, cotton stalk, sunflower stalk and wheat straw. The XOS-yielding treatments that have been studied include acid hydrolysis, alkaline hydrolysis, auto-hydrolysis and enzymatic hydrolysis, but the breaking of bonds present in these compounds is relatively difficult and costly, thus limiting the production of XOS. To obviate this limitation, a thorough evaluation of the most convenient methods and the opportunities for innovation in this area is needed. Another challenge is the screening and taxonomy of microorganisms that produce the xylanolytic complex and enzymes and reaction mechanisms involved. Among the standing out microorganisms involved in lignocellulose degradation are Trichoderma harzianum, Cellulosimicrobium cellulans, Penicillium janczewskii, Penicillium echinulatu, Trichoderma reesei and Aspergillus awamori. The enzyme complex predominantly comprises endoxylanase and enzymes that remove hemicellulose side groups such as the acetyl group. The complex has low β-xylosidase activities because β-xylosidase stimulates the production of xylose instead of XOS; xylose, in turn, inhibits the enzymes that produce XOS. The enzymatic conversion of xylan in XOS is the preferred route for the food industries because of problems associated with chemical technologies (e.g., acid hydrolysis) due to the release of toxic and undesired products, such as furfural. The improvement of the bioprocess for XOS production and its benefits for several applications are discussed in this study. © 2012 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A strain of the flamentous fungus Aspergillus niger was isolated and shown to possess extracellular xylanolytic activity. These enzymes have biotechnological potential and can be employed in various industries. This fungus produced its highest xylanase activity in a medium made up of 0.1% CaCO3, 0.5% NaCl, 0.1% NH4Cl, 0.5% corn steep liquor and 1% carbon source, at pH 8.0. A low-cost hemicellulose residue (powdered corncob) proved to be an excellent inducer of the A. niger xylanolytic complex. Filtration of the crude culture medium with suspended kaolin was ideal for to clarify the extract and led to partial purifcation of the xylanolytic activity. The apparent molecular mass of the xylanase was about 32.3 kDa. Maximum enzyme activity occurred at pH 5.0 and 55-60oC. Apparent Km was 10.41 ± 0.282 mg/mL and Vmax was 3.32 ± 0.053 U/mg protein, with birchwood xylan as the substrate. Activation energy was 4.55 kcal/mol and half-life of the crude enzyme at 60oC was 30 minutes. Addition of 2% glucose to the culture medium supplemented with xylan repressed xylanase production, but in the presence of xylose the enzyme production was not affected.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Alimentos e Nutrição - FCFAR

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of spectroscopy to the study of contaminants in soils is important. Among the many contaminants is arsenic, which is highly labile and may leach to non-contaminated areas. Minerals of arsenate may form depending upon the availability of specific cations for example calcium and iron. Such minerals include carminite, pharmacosiderite and talmessite. Each of these arsenate minerals can be identified by its characteristic Raman spectrum enabling identification.

Relevância:

20.00% 20.00%

Publicador: